Lipid Tail Protrusion in Simulations Predicts Fusogenic Activity of Influenza Fusion Peptide Mutants and Conformational Models
نویسندگان
چکیده
Fusion peptides from influenza hemagglutinin act on membranes to promote membrane fusion, but the mechanism by which they do so remains unknown. Recent theoretical work has suggested that contact of protruding lipid tails may be an important feature of the transition state for membrane fusion. If this is so, then influenza fusion peptides would be expected to promote tail protrusion in proportion to the ability of the corresponding full-length hemagglutinin to drive lipid mixing in fusion assays. We have performed molecular dynamics simulations of influenza fusion peptides in lipid bilayers, comparing the X-31 influenza strain against a series of N-terminal mutants. As hypothesized, the probability of lipid tail protrusion correlates well with the lipid mixing rate induced by each mutant. This supports the conclusion that tail protrusion is important to the transition state for fusion. Furthermore, it suggests that tail protrusion can be used to examine how fusion peptides might interact with membranes to promote fusion. Previous models for native influenza fusion peptide structure in membranes include a kinked helix, a straight helix, and a helical hairpin. Our simulations visit each of these conformations. Thus, the free energy differences between each are likely low enough that specifics of the membrane environment and peptide construct may be sufficient to modulate the equilibrium between them. However, the kinked helix promotes lipid tail protrusion in our simulations much more strongly than the other two structures. We therefore predict that the kinked helix is the most fusogenic of these three conformations.
منابع مشابه
Line-Tension Controlled Mechanism for Influenza Fusion
Our molecular simulations reveal that wild-type influenza fusion peptides are able to stabilize a highly fusogenic pre-fusion structure, i.e. a peptide bundle formed by four or more trans-membrane arranged fusion peptides. We rationalize that the lipid rim around such bundle has a non-vanishing rim energy (line-tension), which is essential to (i) stabilize the initial contact point between the ...
متن کاملFusing simulation and experiment: The effect of mutations on the structure and activity of the influenza fusion peptide
During the infection process, the influenza fusion peptide (FP) inserts into the host membrane, playing a crucial role in the fusion process between the viral and host membranes. In this work we used a combination of simulation and experimental techniques to analyse the molecular details of this process, which are largely unknown. Although the FP structure has been obtained by NMR in detergent ...
متن کاملSolid-state nuclear magnetic resonance studies of HIV and influenza fusion peptide orientations in membrane bilayers using stacked glass plate samples.
The human immunodeficiency virus (HIV) and influenza virus fusion peptides are approximately 20-residue sequences which catalyze the fusion of viral and host cell membranes. The orientations of these peptides in lipid bilayers have been probed with 15N solid-state nuclear magnetic resonance (NMR) spectroscopy of samples containing membranes oriented between stacked glass plates. Each of the pep...
متن کاملOligomerization of fusogenic peptides promotes membrane fusion by enhancing membrane destabilization.
A key element of membrane fusion reactions in biology is the involvement of specific fusion proteins. In many viruses, the proteins that mediate membrane fusion usually exist as homotrimers. Furthermore, they contain extended triple-helical coiled-coil domains and fusogenic peptides. It has been suggested that the coiled-coil domains present the fusogenic peptide in a conformation or geometry f...
متن کاملFusion characteristics of influenza C viruses.
A number of different influenza C virus strains were tested for their fusion properties using a resonance energy assay which allows direct monitoring of fusion between virus membranes and artificial lipid vesicles. The fusion pH of various strains was found to range between 5.6 and 6.1. Haemolytic activity of the different strains with chicken erythrocytes was observed at slightly lower pH valu...
متن کامل